skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Elsayed-Ali, H_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ultrafast lattice deformation of tens to hundreds of nanometer thick metallic crystals, after femtosecond laser excitation, was measured directly using 8.04 keV subpicosecond x-ray and 59 keV femtosecond electron pulses. Coherent phonons were generated in both single crystal and polycrystalline films. Lattice compression was observed within the first few picoseconds after laser irradiation in single crystal aluminum, which was attributed to the generation of a blast force and the propagation of elastic waves. The different time scales of lattice heating for tens and hundreds nanometer thick films are clearly distinguished by electron and x-ray pulse diffraction. The electron and lattice heating due to ultrafast deposition of photon energy was simulated using the two-temperature model and the results agreed with experimental observations. This study demonstrates that the combination of two complementary ultrafast time-resolved methods, ultrafast x-ray, and electron diffraction will provide a panoramic picture of the transient structural changes in crystals. 
    more » « less